BNJ 2.03a
Beginner Developer Tutorial

Chris H. Meyer
(revised by William H. Hsu)
Kansas State University
KDD Laboratory
http://www.kddresearch.org
http://bndev.sourceforge.net

Contents

- Introduction
- Inference Tutorial
- Learning Tutorial
- Coding the Wizards

http://bndev.sourceforge.net
BNJ 2.0a Tools

- Offers many new tools in GUI form
- This lecture will focus on the Inference and Learning Wizards
- We will also look at components such as evidence, CPT tables, and algorithms behind learning

Contents

- Introduction
- Inference Tutorial
- Learning Tutorial
- Coding the Wizards
Starting the Inference Wizard (1)

- Select Tools → Inference Wizard

Starting the Inference Wizard (2)

- **Load**
 - existing network
 - or
 - GUI network

- You may also select to have an evidence file present
Using the Inference Wizard (1)

- Exact Inference Methods
 - LS / Junction Tree
 - Variable Elimination (elimbel)
 - Loop Cutset Conditioning
 - Pearl's Propagation (tree only)

Using the Inference Wizard (2)

- L-S Algorithm contains 2 main steps:
 - Creates a tree of cliques (junction tree) from the Bayesian Network
 - Computes probability of cliques, then single-node properties are formed based on probability of cliques
Using the Inference Wizard (3)

(Example of Cliques in L-S algorithm)
Courtesy of Haipeng Guo
http://bndev.sourceforge.net

Using the Inference Wizard (4)

- Variable Elimination
 - Uses confactors and the VE algorithm instead of trees
- Loop Cutset
 - Finds minimum cutsets of probability in Bayesian Networks and computes probability from the cutsets

http://bndev.sourceforge.net
Using the Inference Wizard (5)

- Pearl’s Propagation
 - Uses message-passing as data from 1 vertex propagates to all neighbors, then to neighbor's neighbors, etc…
- All algorithms are useful in the correct circumstance, but full explanation is not in the scope of this lecture

Using the Inference Wizard (6)

- Approximate Inference
 - Logic Sampling, Forward Sampling, Likelihood Weighting, Self-Importance Sampling, Adaptive-Importance Sampling, Pearl MCMC Method, Chavez MCMC Method
- Again, all algorithms are useful in the correct circumstance
- Output your data to chosen file on completion
Contents

- Introduction
- Inference Tutorial
- Learning Tutorial
- Coding the Wizards

Starting the Learning Wizard (1)

- Select Tools → Learning Wizard

http://bndev.sourceforge.net
Starting the Learning Wizard (2)

- Load Local File
- Or Database File

Using the Learning Wizard (1)

- Select your Learning Algorithm
Using the Learning Wizard (2)

- Depending on user’s desire, different learning algorithms will prove to be more effective

- Output results to file with desired ordering

Contents

- Introduction
- Inference Tutorial
- Learning Tutorial
- Coding the Wizards
Inference Wizard Coding (1)

- GUI
 - Main GUI window passed as owner of InferenceWizard.java
 - All Buttons, JButtons, JRadioButtons, etc. are added to InferenceWizard.java's ActionListener(actionEvent e) method

Inference Wizard Coding (2)

- Secondary Windows
 - Built using BNJFileDialogFactory class

- GUI = First 500 lines of code for InferenceWizard.java

- Main Brain = Last 100 lines of code
Approximate Inference is slightly more complicated

- JTree, DefaultTreeModel, and InferenceResult are used for inference calculation

- These are found in javax.swing.tree.* and edu.ksu.cis.bnj.bbn.inference.*
Inference Wizard Coding (5)

- Inference.getMarginals() returns an InferenceResult, which contains keys used for enumeration
- InferenceWizard parses all nodes, and adds them to a DefaultTreeModel.
- On completion of parsing, the JTree is updated with this model

Inference Wizard Coding (6)

- JPanel is created upon model completion for results

- Check edu.ksu.cis.bnj.bbn.inference.* for algorithm explanations
Coding the Learning Wizard (1)

- GUI
 - Almost exactly the same as InferenceWizard.java, except…
 - Database functionality has been implemented
 - Currently supports Oracle, MySQL, and PostgreSQL

Coding the Learning Wizard (2)

- Except for Database methods, connect() and disconnect(), the Learning Wizard is basically a mirror of the Inference Wizard
- GUI = First 400 lines of code for LearningWizard.java
- Main Brain = Last 30 lines of code
Coding the Learning Wizard (3)

- Key element of LearningWizard.java = Learner
 - Imported from edu.ksu.cis.bnj.bbn.learning.*

- Learner is then instantiated with the selected algorithm and data as parameters
 - i.e.:
 learner = Learner.load(learningEngines[selectedAlgorithm][1], data);
 Or
 learner = new PRMk2((Database) data, null);

Coding the Learning Wizard (4)

- Learned graph is returned via
 Learner.getGraph()

- This statement returns a BBNGraph suitable for viewing

- Check edu.ksu.cis.bnj.bbn.learning.* for algorithm explanations